2- نحسب الوسط الحسابي لهاتين القيمتين وكما ياتي :-

وهذه القيمة تمثل الوسيط للبيانات أعلاه .

حساب الوسيط من البيانات المبوبة

توجد عدة طرائق في حساب قيمة الوسيط للبيانات المبوبة , وسنكتفي بطريقة واحدة هي طريقة التكرار المتجمع الصاعد , وذلك باستخدام العلاقة الاتية :-

و = الوسيط

ل = طول الفئة .

مثال: البيانات في الجدول الاتي تبين درجات (200) طالبا بعد إكمالهم لاختبار في مادة الفيزياء والمطلوب حساب الوسيط لهذه الدرجات.

100- 90	-80	- 70	-60	- 50	- 40	فئات الدرجات
17	30	41	53	34	25	التكرار

الحل : من ملاحظة قانون الوسيط نجد باننا بحاجة الى حساب التكرار المتجمع الصاعد , لذا نقوم باعداد جدول وكالاتى :-

التكرار المتجمع الصاعد	التكرار	الفئات
صفر	25	- 40
25	34	- 50
59	53	- 60
112	41	- 70
153	30	- 80
183	17	100 - 90
200	200	المجموع

نبحث في الجدول السابق في عمود التكرار المتجمع الصاعد عن القيمتين التي يقع بينهما ترتيب الوسيط , وهاتان القيمتان هما (59 , 112) , ونؤشر على كلا القيمتين , وكما في الجدول الاتي :-

التكرار المتجمع الصاعد	التكرار	الفئات
صفر	25	- 40
25	34	- 50
59	53	- 60
112	41	- 70
153	30	- 80
183	17	100 - 90
200	200	المجموع

وبذلك فأن :-

الحد الادنى للفئة الوسيطية = 60

التكرار المتجمع الصاعد السابق = 59

التكرار المتجمع الصاعد اللاحق = 112

طول الفئة = الحد الاعلى للفئة - الحد الادنى للفئة = 50 - 40 = 10

ترتيب الوسيط – التكرار المتجمع الصاعد السابق × ل الوسيط = الحد الأدنى للفئة الوسيطية + ______ × ل التكرار المتجمع الصاعد اللاحق – التكرار المتجمع الصاعد السابق

$$\begin{array}{r}
 59 - 100 \\
 10 \times \underline{\qquad} + 60 = \\
 59 - 112 \\
 67,73 =
 \end{array}$$

أهمية الوسيط

ان الاستخراج قيمة الوسيط لمجموعة من البيانات او الدرجات اهمية كبيرة تتجلى في النقاط الاتية:

- 1- يستخدم لتلخيص مجموعة كبيرة من البيانات او الدرجات.
- 2- يستخدم في حساب بقية مقاييس النزعة المركزية كالوسط الحسابي او المنوال.

3- يستخدم في حساب بعض من الوسائل الحسابية مثل الالتواء كما سنلاحظ في الفصل القادم .

ثالثاً: المنوال Mode

يعرف المنوال لمجموعة من الدرجات او البيانات بانه القيمة الأكثر شيوعاً أو تكراراً في تلك الدرجات او البيانات .

حساب المنوال من البيانات الغير مبوبة

اذا كان لدينا مجموعة من الدرجات او البيانات , ففي حالة تكرار درجة او قيمة واحدة فيتم اختيارها كمنوال , أما في حالة تكرار درجتين او رقمين بنفس عدد مرات , فيتم اختيارهما معا كمنوال , , وفي حالة عدم تكرار أي درجة او رقم , ففي هذه الحالة نقول انه لا يوجد منوال .

مثال: احسب المنوال لكل مجموعة من البيانات الاتية:-

المنوال = 6	2	4	8	6	3	9	6
المنوال =5	5	7	5	8	6	5	8
المنوال = 4 و 7	7	9	8	4	2	7	4
لا يوجد منوال	1	7	5	9	3	2	6

حساب المنوال من البيانات المبوبة

توجد عدة طرائق لحساب المنوال من البيانات المبوبة , وسنكتفي بشرح طريقة واحدة , والتي يطلق عليها بطريقة الرافعة . اذ يمكن حساب المنوال لعدد من البيانات باستخدام العلاقة الاتبة :

اذ ان :-

أ = الحد ألأدنى لفئة المنوال والمقصود بدايتها .

ك 1 = تكرار الفئة التي تسبق فئة المنوال

ك 2 = تكرار الفئة التي تلى فئة المنوال

ل = طول الفئة.

ملاحظة : فئة المنوال هي الفئة التي يكون لها اكبر تكرار .

مثال:

الجدول الاتي يمثل درجات (100) طالب في مادة علم الاحياء .

100-90	-80	-70	-60	-50	-40	فئات الدرجة
8	15	20	32	18	7	عدد الطلاب

والمطلوب حساب المنوال لهذه الدرجات.

الحل : نعد جدولا يشمل مراكز الفئات والتكرارات وكما يأتي :-

من خلال ملاحظة الجدول اعلاه يمكن ان نستنتج ان فئة المنوال هي التي نتراوح ما بين (60–70) , لانها تضم اكبر تكرار (32) , وبذلك تكون قيمتي ك 1 و ك 2 والتي تساوي (18 , 20) على التوالي وكما في الجدول الاتي :-

	التكرار	الفئات
	7	-40
14	18	-50
فئة المنوال	32	-60
2설	20	-70
	15	-80
	8	100-90

أهمية المنوال

ان الاستخراج قيمة المنوال لمجموعة من البيانات او الدرجات اهمية تتجلى في النقاط الاتية :

1- يستخدم لتلخيص مجموعة كبيرة من البيانات او الدرجات.

2- يستخدم في حساب بقية مقاييس النزعة المركزية كالوسط الحسابي او الوسيط.

العلاقة بين مقاييس النزعة المركزية

هناك علاقة بين مقاييس النزعة المركزية (الوسط الحسابي و الوسيط و المنوال) وكما في العلاقة الاتية :-

المنوال = 3×1 الوسيط - 2×1 الوسط الحسابي

أي إننا نتمكن من حساب أي مقياس من مقاييس النزعة المركزية من معرفة قيمتي المقياسين الآخرين .

الفصل الرابع مقاییس التشتت Measures Of Tendency