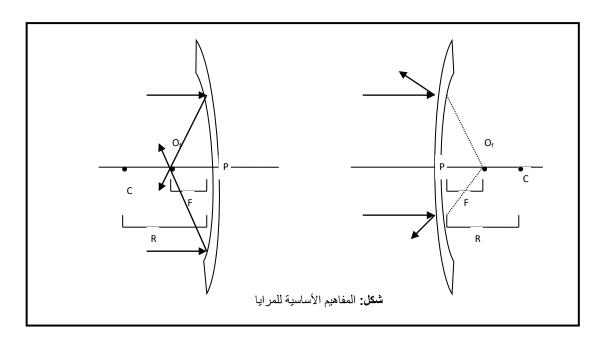
اعداد

م.م. عبیر ابراهیم اعشوی


م.م. احمد محمد خضر

المحاضرة السابعة

الفيزياء العامة

المصطلحات الأساسية للمرايا (General Terms for Mirrors)

ولكي نتعرّف على كيفية تكوّن الصور في هذين النوعين من المرايا الكروية (المحدبة ، المقعرة) علينا التعرّف على المفاهيم التالية المتعلقة بها وكما مبيّن في الشكل الاتي :

1- قطب المرآة (Mirror Pole) (P

و هو النقطة التي تقع في منتصف سطح المرآة .

2- مركز تكوّر المرآة (Mirror Centre of Curvature) (C

وهو مركز الكرة الذي أقتطعت منه المرآة.

3- المحور الرئيسي للمرآة (Principle Axis of Mirror)

و هو الخط الواصل بين قطب المرآة ومركز تكوّرها .

4- نصف قطر التكوّر (Radius of Curvature)

وهي المسافة بين قطب المرآة ومركز تكوّر المرآة .

(O_f) (Original Focus of Mirror) البؤرة الأصلية للمرآة -5

وهي النقطة على المحور الرئيسي ، وتكون وهمية في حالة المرآة المحدبة لأنها تتشكّل من إمتدادات الأشعة المنعكسة عن سطح المرآة . وحقيقية في حالة المرآة المقعرة لأنها تتشكّل من تلاقي الأشعة المنعكسة نفسها عن سطح المرآة .

6- البعد البؤري للمرآة (Focal Length of Mirror) 6-

و هو المسافة بين قطب المرآة وبؤرتها ، ويساوي نصف (نصف قطر تكوّر المرآة (R)) ، أي أن :

$$F = \frac{R}{2} \Rightarrow R = 2F...(1-8)$$

معادلة المرايا الكروية (Spherical Mirrors Equation)

وهي المعادلة التي تربط بين كل من البعد البؤري للمرآة (Focal Length of Mirror) ، وبعد البوري للمرآة (Focal Length of Mirror) ، وبعد الصورة (O) ، وبعد الصورة (I) بالعلاقة الأتية :

$$\frac{1}{F} = \frac{1}{O} + \frac{1}{I} \Leftrightarrow \frac{2}{R} = \frac{1}{O} + \frac{1}{I}...(2 - 8)$$

عند تطبيق المعادلة أعلاه يجب الأخذ النقاط الآتية بعين الإعتبار:

1- (F, R) تكون موجبة للمرآة المقعرة ، وسالبة للمرآة المحدبة .

2- (1) تكون موجبة إذا كانت الصورة متكوّنة أمام المرآة (حقيقية) ، وسالبة إذا كانت الصورة متكوّنة خلف المرآة (وهمية) .

ملاحظة : لتحديد مقدار التكبير (M) يتم تطبيق القانون الآتي : -

$$M = \left| \frac{I}{O} \right| = \frac{h_I}{h_O} ...(3 - 8)$$

حيث أن:

M : مقدار التكبير ، فإذا كانت :

الصورة تكون مكبّرة. M
ightarrow M: الصورة تكون مصغّرة. M = 1 : الصورة لا مكبّرة ولا مصغّرة. M
ightarrow 1

. أول (إرتفاع) الجسم ، طول (إرتفاع) الصورة . $h_{\rm I}, h_{\rm o}$

مثال : وضع جسم طوله (3cm) على بعد (4cm) من مرآة محدبة بعدها البؤري (3cm) ، حدّد صفات الصورة ومقدار التكبير ؟

الحل : من خلال معطيات السؤال نجد أن :

$$O = 4cm, F = -3cm, I = ?, M = ?$$

من قانون المرايا نجد:

$$\frac{1}{F} = \frac{1}{O} + \frac{1}{I}$$

$$\frac{1}{-3} = \frac{1}{4} + \frac{1}{I} \Longrightarrow I = -1.7cm$$

وهذا يعني أن الصورة وهمية.

ولتحديد مقدار التكبير (M) :

$$M = \left| \frac{I}{O} \right| = \left| \frac{-1.7}{4} \right| \Longrightarrow M = 0.42$$

أي أن الصورة وهمية ، معتدلة ، مصغّرة تقريبا (0.42 مرة) ، و تقع على بعد (1.7 cm -) خلف المرآة .

مثال : وضع جسم إرتفاعه (6cm) على بعد (30cm) أمام مرآة محدبة نصف قطر تكوّرها (40cm). أوجد موضع وإرتفاع الصورة ؟

الحل : من خلال معطيات السؤال نجد أن :

$$O = 30cm, h_o = 6cm, R = -40cm, I = ?, h_I = ?$$

$$F = \frac{R}{2} = \frac{-40}{2} \left[\therefore F = -20cm \right]$$

لمعرفة موضع الصورة:

$$\frac{1}{F} = \frac{1}{O} + \frac{1}{I}$$

$$\frac{1}{-20} = \frac{1}{30} + \frac{1}{I} \Longrightarrow I = -12cm$$

ولمعرفة إرتفاع الصورة:

$$M = \left| \frac{I}{O} \right| = \frac{h_I}{h_O}$$

$$\Rightarrow M = \left| \frac{-12}{30} \right| = \frac{h_I}{6} \left[\therefore h_I = 2.4cm \right]$$

مثال : وضع جسم طوله (3cm) على بعد (4cm) من مرآة مقعرة بعدها البؤري (3cm)، حدّد صفات الصورة ومقدار التكبير ؟

الحل : من خلال معطيات السؤال نجد أن :

$$O = 4cm, F = 3cm, I = ?, M = ?$$

من قانون المرايا نجد:

$$\frac{1}{F} = \frac{1}{O} + \frac{1}{I}$$

$$\frac{1}{3} = \frac{1}{4} + \frac{1}{I} \Longrightarrow I = 12cm$$

وهذا يعني أن الصورة حقيقية ومقلوبة.

ولتحديد مقدار التكبير (M):

$$M = \left| \frac{I}{O} \right| = \left| \frac{12}{4} \right| \Longrightarrow M = 3$$

أي أن الصورة حقيقية ، مقلوبة ، مكبّرة ثلاث مرات ، وتقع على بعد (12cm) أمام المرآة .

مثال : ما هو نصف قطر تكور مرآة مقعرة يراد إستخدامها للحصول على صورة حقيقية لها ضعفي حجم الجسم ، إذا وضع الجسم على بعد (60cm) منها ؟

الحل : من خلال معطيات السؤال نجد أن :

$$O = 60cm, R = ?$$

$$M = \left| \frac{I}{O} \right| = 2$$

$$\Rightarrow 2 = \left| \frac{I}{60} \right| \therefore I = 120cm$$

من قانون المرايا نجد:

$$\frac{1}{F} = \frac{1}{O} + \frac{1}{I}$$

$$\frac{1}{F} = \frac{1}{60} + \frac{1}{120} \Longrightarrow F = 40cm$$

$$F = \frac{R}{2} \Rightarrow R = 2F$$

$$\Rightarrow R = (2)(40) \overline{ \therefore R = 80cm}$$

مثال : وضع جسم على بعد (30cm) من مرآة كروية فتكوّنت له صورة وهمية على بعد (5cm) من المرآة . أوجد نصف قطر تكوّر المرآة ، وبيّن نوعها ؟

الحل : من خلال معطيات السؤال نجد أن :

$$O = 30cm, I = -5cm, R = ?$$

من قانون المرايا نجد:

$$\frac{1}{F} = \frac{1}{O} + \frac{1}{I}$$

$$\frac{1}{F} = \frac{1}{30} + \frac{1}{-5} \Longrightarrow F = -6cm$$

نوع المرآة محدبة لأن البعد البؤري سالب .

$$F = \frac{R}{2} \Rightarrow R = 2F$$

$$\Rightarrow R = (2)(-6)$$
 $\therefore R = -12cm$

مثال : ما هو نوع المرآة الكروية التي يجب إستخدامها لتعطي صورة معتدلة ومصغّرة إلى (1/5) حجم الجسم الموضوع على بعد (1/5) أمامها ، إحسب أيضا نصف قطر تكوّر المرآة ؟

الحل : من خلال معطيات السؤال نجد أن :

$$O = 15cm, R = ?$$

الصورة المعتدلة التي تتكوّن في المرآة الكروية تكون وهمية.

$$M = \left| \frac{I}{O} \right| = -\frac{1}{5}$$

$$-\frac{1}{5} = \left| \frac{I}{15} \right| \Longrightarrow I = -3cm$$

من قانون المرايا نجد:

$$\frac{1}{F} = \frac{1}{O} + \frac{1}{I}$$

$$\frac{1}{F} = \frac{1}{15} + \frac{1}{-3} \Longrightarrow F = -3.8cm$$

نوع المرآة محدبة لأن البعد البؤري سالب .

$$F = \frac{R}{2} \Rightarrow R = 2F$$

$$\Rightarrow R = (2)(-3.8)$$
 $\therefore R = -7.6cm$